Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Recent Adv Drug Deliv Formul ; 16(3): 192-216, 2022.
Article in English | MEDLINE | ID: covidwho-1963230

ABSTRACT

Coronavirus disease (COVID-19) emerged in China in December 2019. In March 2020, the WHO declared it a pandemic leading to worldwide lockdowns and travel restrictions. By May, it infected 4,789,205 and killed 318,789 people. This led to severe shortages in the medical sector besides devastating socio-economic effects. Many technologies such as artificial intelligence (AI), virtual reality (VR), microfluidics, 3D printing, and 3D scanning can step into contain the virus and hinder its extensive spread. This article aims to explore the potentials of 3D printing and microfluidic in accelerating the diagnosis and monitoring of the disease and fulfilling the shortages of personal protective equipment (PPE) and medical equipment. It highlights the main applications of 3D printers and microfluidics in providing PPE (masks, respirators, face shields, goggles, and isolation chambers/hoods), supportive care (respiratory equipment) and diagnostic supplies (sampling swabs & lab-on-chip) to ease the COVID-19 pressures. Also, the cost of such technology and regulation considerations are addressed. We conclude that 3D printing provided reusable and low-cost solutions to mitigate the shortages. However, safety, sterility, and compatibility with environmental protection standards need to be guaranteed through standardization and assessment by regulatory bodies. Finally, lessons learned from this pandemic can also help the world prepare for upcoming outbreaks.


Subject(s)
COVID-19 , Pandemics , Humans , Pandemics/prevention & control , Microfluidics , COVID-19/epidemiology , Artificial Intelligence , SARS-CoV-2 , Communicable Disease Control , Printing, Three-Dimensional
2.
J Biomol Struct Dyn ; 40(3): 1109-1119, 2022 02.
Article in English | MEDLINE | ID: covidwho-772858

ABSTRACT

Lymphopenia is considered one of the most characteristic clinical features of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 infects host cells via the interaction of its spike protein with the human angiotensin-converting enzyme 2 (hACE2) receptor. Since T lymphocytes display a very low expression level of hACE2, a novel receptor might be involved in the entry of SARS-CoV-2 into T cells. The transmembrane glycoprotein CD147 is highly expressed by activated T lymphocytes, and was recently proposed as a probable route for SARS-CoV-2 invasion. To understand the molecular basis of the potential interaction of SARS-CoV-2 to CD147, we have investigated the binding of the viral spike protein to this receptor in-silico. The results showed that this binding is dominated by electrostatic interactions involving residues Arg403, Asn481, and the backbone of Gly502. The overall binding arrangement shows the CD147 C-terminal domain interacting with the spike external subdomain in the grove between the short antiparallel ß strands, ß1' and ß2', and the small helix α1'. This proposed interaction was further confirmed using MD simulation and binding free energy calculation. These data contribute to a better understanding of the mechanism of infection of SARS-CoV-2 to T lymphocytes and could provide valuable insights for the rational design of adjuvant treatment for COVID-19. Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Lymphopenia , Basigin , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL